Review Article MRI and MRV in Cerebral Venous Thrombosis

نویسنده

  • Zafar Sajjad
چکیده

Although Cerebral venous thrombosis is an uncommon cause of stroke among the young, it is being increasingly recognised. A prothrombotic risk factor is identified in the majority of the patients. In most instances it is seen in women in the post-partum period and those on oral contraceptives. Magnetic Resonance Imaging (MRI) has improved our ability to diagnose this condition however the variability of radiological and clinical presentation remains a challenge. MR in combination with MR venography (MRV) is the single most sensitive diagnostic technique. The MR appearance of the thrombus within the dual sinus or cortical vein is variable and is largely dependent on its age. The loss of the normal flow void on spin echo T2 images is a sensitive parameter. Thrombus on MRV is seen as loss of high flow signal from the sinus. Focal parenchymal changes occur in approximately 50% of cases and are due to oedema and infarction, with or without haemorrhage. Appearances of these lesions too are dependent on their age. Diffuse changes of raised intracranial pressure with gyral effacement may also be present. MR in Cerebral Venous Thrombosis Cerebral venous thrombosis (CVT) is an uncommon disorder. The improvements in imaging techniques and increased awareness among the clinicians and radiologists have however led to the diagnosis being considered more often. As the clinical course and the radiological findings are both highly variable, diagnosis remains difficult. Magnetic Resonance (MR) imaging has assumed the central role in the diagnosis and follow-up of these patients.1 Venous strokes as opposed to arterial strokes are primarily a disease of the young, with young adults and children being most often affected. Prothrombic risk factors can be identified in approximately 85% of patients. Infections, dehydration, pregnancy and oral contraceptive use are among the more common acquired risk factors. Three quarters of the adult patients are women. This increased risk seems to be entirely associated to oral contraceptive use and peri/post partum period.1 The Normal Venous Anatomy and MR Venography The cerebral venous system is composed of superficial and deep channels. The superficial system consists of superior and inferior saggital sinuses along with the superficial cortical veins. The deep system consists of the deep cerebral veins, the vein of Galen, the straight sinus, the transverse and sigmoid sinuses. The arrangement of the cortical veins is highly variable. They can be divided into three groups, the anterior group draining into the cavernous sinus, the lateroventral group draining into the lateral sinus, and the mediodorsal group draining into the superior saggital sinus. There are multiple anastamotic channels which are equally variable. The more constant parts of this anastamotic network are the veins of Labbe, which connect the middle cerebral veins to the lateral sinus and the great vein of Tollard, connecting the middle cerebral veins to the superior saggital sinus. The superior saggital sinus (SSS) commences at the foramen cecom anteriorly and runs along the inner surface of the calvarium in the mid saggital plain to the internal occipital protuberance. The anterior part is narrow and may be completely absent. The SSS drain the superficial surface of the cerebral hemispheres via the cortical veins. At the internal occipital protuberance, the SSS joins the straight sinus and divides into the two transverse sinuses running laterally. The confluence of sinuses at the internal occipital protuberance is known as the trocula of herophili. The sizes of the lateral sinuses are often asymmetric with the left transverse sinus being smaller (or even absent) than the right one. The transverse sinuses run forward to become the sigmoid sinuses whish in turn drain into the internal jugular veins. The straight sinus is formed by the inferior saggital sinus and the great vein of Galen. The vein of Galen in turn is formed by the confluence of the deep cerebral veins and the basal veins (of Rosenthal). The veins of the posterior fossa also show considerable variation in their arrangement. They may be divided into three groups. Anterior group; draining to the petrosal sinuses, posterior group; draining to the straight Vol. 56, No. 11, November 2006 523 sinus and the trocula and the superior group; draining to the vein of Galen. In addition to the arrangement of the venous channels, understanding their structure is also important in understanding the patho-physiology of CVT. The cerebral venous channels lack valves. This allows bidirectional flow of blood and lets potentially infected blood from the scalp and mastoids to enter the intracranial circulation. Absence of tunica muscularis allows the veins to distend and remain dilated in response to even extended occlusion. Arachnoid granulations project into the dural sinuses and are the site of absorption of the cerebro-spinal fluid.2 MR venography is a non invasive technique which allows visualisation of the intracranial venous channels. Although this may be done without the use of intravenous contrast, contrast based techniques improve resolution.3 Studies have shown contrast based techniques to be better than non contrast techniques and equivalent to conventional digital subtraction angiographic (DSA) images in the visualisation of cerebral venous anatomy. (Figure 1).4 The great variations in the venous anatomy however make interpretation of images especially in the context of CVT difficult. Non visualisation or asymmetry of cortical veins and transverse sinuses especially need to be critically analysed. MR Appearances in Cerebral Venous Thrombosis (CVT) MR has been used in the diagnosis of CVT for approximately two decades5 and is the modality of choice when the diagnosis of CVT is considered clinically.1,4,6,7 The most common sites of involvement are the transverse sinuses and the SSS, but any venous structure may be involved either in isolation or in combination with another structure.8 The MR features are varied. This variability reflects the spectrum of patho-physiological changes seen after venous occlusion. There are two primary processes. The first process is the development of localised oedema and venous infarction. This is usually seen after the occlusion of cortical veins. The second process is the development of intra-cranial hypertension. This usually occurs due to the occlusion of large dural venous sinuses. These two processes are not exclusive and often occur together.1,4,9 Figure 1. Normal cerebral magnetic resonance venogram. Three-dimensional time of flight images obtained after intravenous injection of gadolinium in the sagittal (A) and coronal (B) planes. There is visualization of dural venous sinuses and superficial and deep cerebral veins.1 = superior sagittal sinus, 2 = straight sinus, 3 = torcular herophili, 4 = vein of Galen, 5 = lateral sinus, 6 = sigmoid sinus, 7 = internal jugular vein, 8 = internal cerebral vein, 9 = basal vein of Rosenthal. The arrows point to superficial cerebral veins. (From: Wasay M, Azeemuddin M. Neuroimaging of cerebral venous thrombosis. J Neuroimaging,2005;15:118-128.). Figure 2. Non Enhanced T1 weighted saggital image. There is extensive thrombus in the superior saggital sinus. The thrombus is giving variable signal with the older thrombus in the anterior part giving a hypertintense signal (Black arrows, and fresh thrombus in the posterior part giving isointense T1 signal (Black arrows).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spontaneous Intracranial Hypotension Plus Cerebral Venous Thrombosis: A Case Report Study

This is a case study of a 34-year-old woman who was admitted to hospital with a history of severe orthostatic headache. She was diagnosed as having spontaneous intracranial hypotension (SIH) by undetectable cerebrospinal fluid (CSF) pressure at lumbar puncture, and with evidence of diffuse dural enhancement of the brain detected by magnetic resonance imaging (MRI). However, the contrast-enhance...

متن کامل

Evaluation of cerebral venous thrombosis risk following oral contraceptive use: A case report and update.

Background and Objectives: The aim of the present study was to report a case of cerebral venous thrombosis (CVT) folowing consumption of the oral contraceptive pills with high estrogen levels. Case Report: A 35-year-old woman presenting a headache was diagnosed with thrombosis in the upper sagittal, sigmoid and transverse  veins, by CT SCAN, MRI and MRV of the brain. Conclusion: The chance ...

متن کامل

Pattern of magnetic resonance imaging and magnetic resonance venography changes in cerebral venous sinus thrombosis.

BACKGROUND Cerebral venous sinus thrombosis is a common but highly under-recognised condition, which is missed not only by general practitioners but also by neurologists. Computerised tomography (CT) or magnetic resonance imaging (MRI) of brain alone is not sufficient to diagnose this condition. Objective of this study was to explore the pattern of magnetic resonance imaging (MRI) and magnetic ...

متن کامل

Early imaging characteristics of 62 cases of cerebral venous sinus thrombosis

This study aimed to evaluate the early imaging characteristics of cerebral venous sinus thrombosis (CVST). A retrospective analysis was conducted of the clinical and imaging data of 62 patients with CVST diagnosed by magnetic resonance imaging (MRI) and/or digital subtraction angiography (DSA). In the 62 cases, MRI (1.5 T MRI) and magnetic resonance venography (MRV) examinations were conducted ...

متن کامل

Thrombolytic Therapy for Cerebral Vein Thrombosis in Antiphospholipid Syndrome Secondary to Systemic Lupus Erythematosus

A 20-year-old woman was admitted to a Gynecology Hospital in her 6th month of pregnancy for high blood pressure and tonic-clonic seizure. Primary diagnosis was eclampsia, and for that reason she underwent cesarean section. She also had headache on frontal and parietal areas without nausea or vomiting. There was not a focal neurological sign. Rheumatology consultation was requested. Systemic lup...

متن کامل

Assessment of cerebral venous sinus thrombosis using T2*-weighted gradient echo magnetic resonance imaging sequences

BACKGROUND The purpose of this study is to demonstrate the advantages of gradient echo (GRE) sequences in the detection and characterization of cerebral venous sinus thrombosis compared to conventional magnetic resonance sequences. METHODS A total of 17 patients with cerebral venous thrombosis (CVT) were evaluated using different magnetic resonance imaging (MRI) sequences. The MRI sequences i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006